Follow the step-by-step guide below to prepare, format, and submit your Smart Learning Content (SLC) items, tools, or datasets for inclusion in the SPLICE catalog.
To contribute to the SPLICE Catalog, categorize your Smart Learning Content (SLC) into one of the following types:
Each type has a specific JSON format. Below are examples and field descriptions for each category:
A collection of Smart Learning Content (SLC) items should be described as a series of JSON records, each formatted as follows:
{
"catalog": "SLCItemCatalog",
"platform_name": "...",
"url": "...",
"lti_instructions_url (required if LTI URL)": "...",
"exercise_type": "...",
"license (optional)": "...",
"description (optional)": "...",
"author (optional)": "...",
"institution": "...",
"keywords": ["...", "..."],
"exercise_name": "...",
"language (optional)": "...",
"iframe_url": "...",
"lti_url": "..."
}
Field Descriptions:
Describe tools that support Smart Learning Content using this format:
{
"catalog": "SLCToolsCatalog",
"platform_name": "...",
"url": "...",
"tool_description": "...",
"license" (optional): "...",
"standard_support": "...",
"keywords": "...",
"contact_email": "..."
}
Field Descriptions:
Describe datasets available for Smart Learning Content with the following JSON format:
{
"catalog": "dataset",
"title": "...",
"publisher": "...",
"dataset_name": "...",
"url": "...",
"description": "...",
"data_format": "...",
"data_type": "...",
"keywords": "...",
"population": "...",
"affiliation": "...",
"language": "...",
"date": "..."
}
Field Descriptions:
Once your JSON file is ready, you have two options to submit your Smart Learning Content (SLC) to the SPLICE Catalog:
We look forward to your contribution to the SPLICE Catalog!
Here are JSON exports examples for OpenDSA, CodeWorkout SLC items submission, OpenDSA tool submission and a Dataset submission:
{
"catalog": "SLCItemCatalog",
"platform_name": "OpenDSA",
"url": "https://opendsa-server.cs.vt.edu",
"exercise_type": "KA",
"license": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)",
"description": "Introduction Summary Questions",
"author": "Cliff Shaffer",
"keywords": ["Introduction"],
"exercise_name": "Introduction Summary Questions",
"language": "N/A",
"iframe_url": "https://opendsax.cs.vt.edu/embed/IntroSumm",
"lti_url": "https://opendsax.cs.vt.edu/lti/launch?custom_ex_short_name=IntroSumm",
"lti_instructions_url": "https://opendsa-server.cs.vt.edu/guides/opendsa-canvas"
}
{
"catalog": "SLCItemCatalog",
"platform_name": "CodeWorkout",
"url": "https://codeworkout.cs.vt.edu",
"exercise_type": "Coding Question",
"license": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)",
"description": "Introduction Summary Questions",
"author": "Stephen Edwards",
"keywords": ["programming", "coding"],
"exercise_name": "Introduction Summary Questions",
"language": "N/A",
"iframe_url": "https://codeworkout.cs.vt.edu/gym/exercises/1/practice",
"lti_url": "https://codeworkout.cs.vt.edu/lti/launch/gym/exercises/1/practice",
"lti_instructions_url": "https://codeworkout.cs.vt.edu"
}
SLC tools catalog
{
"catalog": "SLCToolsCatalog",
"platform_name": "OpenDSA",
"url": "https://opendsa.server.vt.edu/",
"tool_description": "CS e-textbook platform.",
"license": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International",
"standard_support": "LTI",
"keywords": ["Algorithm visualization", "practice", "auto-assessment"],
"contact_email": "opendsa@cs.vt.edu"
}
Dataset catalog
{
"catalogType": "DatasetCatalog",
"title": "iSnap - Introductory Programming",
"platform": "DataShop",
"datasetName": "iSnap - Introductory Programming",
"url": "https://datashop.web.cmu.edu/DatasetInfo?datasetId=321",
"description": "This project contains programming log data from iSnap, a visual, block-based programming environment based on Snap!. The data were collected from an introductory programming course for non-majors, starting in Fall 2015. Starting in Spring 2016, the environment provided students with on-demand hints for some assignments. The data includes not only detailed logs of all student actions within the environment, but also complete snapshots of student code as it was edited.",
"dataFormats": ["txt"],
"dataType": ["Programming"],
"keywords": ["programming", "log data"],
"population": "CS0 (non-majors)",
"contributors": [
{
"Name": "Thomas Price",
"affiliation": "North Carolina State University"
}
],
"yearPublished": 2015
}